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Abstract. We give a overview of the main areas in theoretical physics, with emphasis on
their relation to Lagrangian formalism in classical mechanics. This review covers classical
mechanics; the road from classical mechanics to Schrodinger's quantum mechanics; electro­
magnetism, special and general relativity, and (very briefly) gauge field theory and the Higgs
mechanism. We shun mathematical rigor in favor of a straightforward presentation.
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1. Introduction

The present text is intended as a very short primer on theoretical physics for philoso­
phers of science. We give here a necessarily brief albeit self-contained overview of
theories such as classical mechanics, electromagnetism, quantum mechanics at the
first-quantization level and its relation to classical mechanics, plus special and gen­
eral relativity and an addendum on gauge field theory.

It is stressed throughout the text that classical mechanics in its Lagrangian for­
mulation is the formal backbone of theoretical physics, where we use the Lagrangian
formalism for field theories. Physicists use to quote the slogan:

To formulate a theory is to build a Lagrangian for it.

(We will soon elaborate on that.) So, classical mechanics is a kind of unifying tool
for most of physics (domains that do not fit into the picture are thermodynamics and
statistical mechanics).

While we mention gauge theory in its relation to general relativity, as general
relativity is a very singular example of gauge theory, we do not delve on more recent
areas such as the bulk of quantum field theory, .or string theory (we make a brief
remark on the Higgs mechanism). A much wider survey is now being prepared with
N. C. A. da Costa.

This text was the basis for two courses given at the lEA-USP in 2002 and 2003,
and (in modified form) it was taught at the Philosophy of Science Program at COPPE­

UFRJ. Prerequisites are: calculus, differential equations, linear algebra, some group
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theory. Plus that rather mysterious condition, "mathematical maturity," that is, the
ability to read mathematics as if one were going through a musical score.

I must acknowledge my huge, constant debt to Newton da Costa, with whom I've
been discussing topics in the philosophy of physics for a long time.

Sources

We will only give sources for classical mechanics, as we've followed the presentation
of Goldstein 1950 and Leech 1965, with some input from the Lanczos treatise (Lanc­
zos 1970). Presentation of electromagnetism and of general relativity is standard, as
well as that of gauge theory, and there aren't many variations in the way those areas
are introduced in the literature.

2. Classical mechanics

This is intended as a summary of the main approaches and formalisms in classical
(or analytical) mechanics. There are actually three such viewpoints:

1. The analytical or Lagrangian formalism, where everything starts from the
action integral, 5 = I Ldt whose variation 05 = 0 gives us Lagrange's equa­
tions.

2. The canonical or Hamiltonian formalism, an intermediate step (of a deep
meaning of its own, since it originates symplectic geometry theory).

3. Hamilton-Jacobi theory, where we conclude that Hamilton's principal func­
tion 5 for material bodies is an (idealized?) wavefunction, and coincides
with the action integral 5 = I Ldt (modulo a constant), so that we are back
to step 1 and close the circle.

Legendre transformations take the Lagrangian formalism onto the Hamiltonian
formalism. Then, a particular kind of the so-called canonical transformations is used
to reach the Hamilton-Jacobi equation which Cornelius Lanczos called the sacred
burning bush of the theory of mechanics.

Motivation for Lagrange's equations

We start from Newton's Second Law; which is usually written for point-like objects
as:

dp
F= dt'

Principia 13(2): 195-232 (2009).
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where p = mY, m being the object's mass and v its velocity vector. If m is constant,
we get:

F=ma,

and that means: the force F that acts upon a point-like object of mass m imparts on
it an acceleration a. (We are using boldface characters for vector objects.)

The intuition! is:

if let by itself, a body will either be at rest or in rectilinear, uniform motion. A
force which is applied to it will only change its state of motion. Forces do not
originate the motion; forces change the motion, that's the point.

If we use components (vector indices appear here "upstairs"):

Or,
d2 x i .

m dt 2 = Fl.

Example 2.1. Suppose that we are dealing with a one-dimensional situation (some
phenomenon, say, with radial symmetry). Suppose moreover that the force is a
gradient force, and decreases as the variable increases. The preceding equation
becomes, in this specific case,

d2 r aVer)
m------

dt2 - ar'

(Use of a is somewhat abusive-but see what we get now.) For we have:

and for t = dr /dt,
d . aVer)
-[mr]=---.
dt ar

We immediately conclude:

d a 1 2 aVer)
--. [-met) ] = -~.
dtar 2 ar

Now recall the energy theorem:

L
XI

F.dx = (l/2)mv; - (l/2)mvg,
Xo

- Principia 13(2): 195-232 (2009).
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(Vi, i = 0,1, is the length of vector Vi.) It is easily proved:

dv dx
Fdx = m"dtdx = mdvd't = mvdv,
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and integration gets our result. We note T(t) = ~m(t)2; T is the kinetic energy of
the object with mass m. Or,

d a. aver)
--.T(r) = ---.
dtar ar

Now, as we can define a function L(r, t) = T(t) - VCr), we can write the above
equation as:

d aL aL
dt at - ar = o.

This is the blueprint for Lagrange's equations. 0

We can argue in a similar vein for several coordinates, whereas we get Lagrange's
equations :

d aL aL
-----=0
dt aqi aqi .

L is the Lagrangian function.

Motivati~n for Hamilton's equations

Example 2.2. Let us be given Lagrange's equations,

d aL aL
dt aqi = aqi·

Write down the total energy of the system as the sum of kinetic energy T and poten­
tial energy V, H = T +V. Here,

1 .2 1 2T = -m(ql) = -(p.)
2 2m I

and
V = V(qi).

(Recall that the momenta are defined as pi = mqi). See that one gets:

- Principia 13(2): 195-232 (2009).
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Of course we can write H as a function of the positions qi and of the momenta
Pi, and also a function of t, both explicitly and through the qi and Pi' Then it is
immediately seen that Newton's Second Law becomes:

aH
Pi = - aqi'

There is still a second set of equations. We'll meet them below. In this specific case,
they simply mean that il = pJm:

. aH 041
--- api'

3. Variational calculus in a nutshell

We will now give some rigor (and a more precise meaning) to the 5 t symbolism we
will use as our main tool in the Lagrangian formulation.

Variations

Consider the integral

J = IX! f(y,y',x)dx,
Xo

where y(x) is seen as a curve. Consider the integral as a functional of the possible
curves y;.we ask, for which curve y is the integral a maximum or a minimum?

The idea is to examine a family of curves y(x, a), where a is a parameter, and to
compute aJfaa = o. We impose that:

1. y(x,O) = y(x), for y(x) the desired solution.

2. y(xo, a) =y(xo).

3. Y(Xl> a) = y(Xl)'

That is, a = 0 gives us our extremal value, and there is no variation at the
integral's endpoints. Let's compute aJfaa = 0:

aJ IX! af ay af ~y'
aa = Xo {ayaa + ay' aa}dx=O.

Now the integrand equals,

af ay af a 2y--+---
ayaa ay' axaa'

Principia 13(2): 195-232 (2009).
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For the second term,
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We can multiply aJ faa throughout by da. Notice that at the extremes the
variation of the curve is O. Then we get, while defining the operator 5:

If we equate it to 0, as d a is arbitrary we get:

at d at
-----=0.
ay dx ay'

Those are the Euler, or Euler-Lagrange variational equations.

Example 3.1. Which is the minimum length curve? Put:

J
2 J2 dJ = ds = [1 + (...!:... )2] 1/2dx.

1 1 dx

The integrand doesn't depend on y, just on y'. Then we have at / ay = 0, and

at y'
=----=-

ay' [l+(y')2]·

Therefore,
d y'

dx [ [1 + (y')2]] = 0,

or
y'

----:--=A
[1 + (y')2] ,

A a constant. It is immediate to see that y' = C, a constant, or that y = ex + C', a
straight line. D

4. The Lagrangian formulation

Physicists like to quote the slogan:

To formulate a theory is to write down a Lagrangian for it.

- Principia 13(2): 195-232 (2009).
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Let's see why. Let us be given a collection of N material points of mass mp each,
and let xlP,x2P,x3P, 1 ~ P ~ N, be the corresponding coordinates of the position
vectors in real Euclidean 3N space. Let moreover x1P, x2P , x3P be the corresponding
coordinates of the velocity vectors, that is,

Form (locally at least) the product space spanned by the coordinates (qi,qi),
where the qi range over the position coordinates and the qi over the velocities. Since
we are dealing with time-varying objects we moreover suppose:

• The functions qi =qi(t), qi =qi(t).

• Those functions are of class Cr
, r > 1.

We define the (general) Lagrangian function

L = L(. . .qi ... , ... qi ... , t) = L(qi,qi, t).

The Lagrange function is usually constructed as L = T - V, the 'spare' or net
amount of energy which is available for the motion of the system. Hamilton's vari­
ational principle (the variation of the action integral) can be understood as the fol­
lowing:

The system's motion is such that the net energy L = T - V is an extremum
(minimum or maximum).

Lagrange's equations out of a variational principle

Notice that 8 can be seen as a differential operator (differential operators satisfy the
condition 8C!g) = (8f)g+ f(8g), besides being linear, commuting with the integral
sign and with other differential operators). Impose and compute:

(1) i
tl

8S = 8 Ldt =0.
to

,
We also have that 8tlto = 8tltl = 8t = 8q i lto = 8q i ltl = O. From the property of
commutation with f and with the other derivative operators, we get:

(2) I.

Principia 13(2): 195-232 (2009).
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Now,
. dido i

o'! =O(..!i.) = -q-.
q dt dt

Given that, compute (out of integration by parts):

Francisco Antonio Doria

(3)

(4)

The term without an integral sign vanishes because of the conditions on oqi at the
integration limits. If we go back to eq. (2),

I
t! oL . d oL .

05 = [-.oq! - -d(-., )oq!]dt =0,
to oq! t oq!

or

It! oL d oL .
05= [-'--d(-.. )]oq!dt=O.

to oq! t oq!

Due to the arbitrariness of the variations oqi, this implies:

oL d oL
(5) oqi-dt(oqi)=O.

Eqs. (5) are Lagrange's equations for the considered system.

Non-potential forces, constraints

The Lagrangian technique can be extended to include some quite general situa­
tions. Suppose that we add the following differential constraints, not necessarily
integrable, to our system given by a Lagrangian L:

Laikdqk +aitdt = O.
k

We have that 0 :5 i :5 m, where m :5 n, n dimension of the configuration space
(space of the qk). The aik are functions of the qk. Of course we can start from a
system of equations,

which act as geometrical constraints upon the system. We differentiate the Ii and
get our previous set of equations; in that case the differential system of constraints
is integrable.

We now show that geometry leads to physics, that is, the existence of those
constraints can be described as a set of forces that act upon the system.

Principia 13(2): 195-232 (2009).
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Lagrange multipliers

From our differential condition,

L aikdqk +aitd t = 0,
k

we get our variational constraints,

203

(Recall that ot = 0.) Let Ai be (so far) undetermined constants, and fonn the linear
combination,

LAiaikoqk = o.
ik

Get the system's variational principle:

J:
I 3L d 3L k
dt~C- - --)oq = o.

o ~ 3qk dt 3qk

Now as the oqk are not independent due to the constraints. Then we may add the
condition above,

L Aiaikoqk =0,
ik

duly integrated, to the variational principle,

J:
I

3L d 3L i k
dt LC-k - --:-;c +LA aik)oq = O.

o k 3q dt 3q i

Now the situation we have is the following:

• There are n oqks.

• There are m relations that connect them. '

• Therefore, we can independently choose n - m variations oqks.

• Once made that choice, the remaining m oqk are detennined by the con­
straint equations.

Principia 13(2): 195-232 (2009).
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We then impose the following n - m conditions on the J...i:

aL d aL i-----+ ~Aa·k=O.
aqk dt aqk ~ I
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Now: the first term in the above equations gives us potential forces for the sys­
tem; second term is the kinetic term. So the linear combination involving the Ai can
be understood as a system of non-potential forces, if the differentials aren't exact.
(If they are, we may add them as extra potential forces.)

5. Hamilton's equations

Reread the motivation at the introduction, before going through the whole argument
below.

Hamiltonian formulation

Define a function:

(6)

where we. must put:

H(qi,Pi' t) = L:qipi - L(qi,qi, t),
i

Each Pi is the momentum component associated to the velocity components qi.

Remark 5.1. This is just a notational convention: objects that sort of behave like
tangent vectors to a curve of coordinates qi(t) with components

. dqi
A' =­

dt

have upper indices; those of the form ax / aqi, also called gradient-like objects, have
lower (or "downstairs") indices.

Objects with upper indices are called contravariant vectors; with lower indices,
they are called covariant vectors. Those names come from the late 19th-century
linear transformation theory on vector spaces. 0 .

- Principia 13(2): 195-232 (2009).
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Suppose that the transformation given by eq. (6) is in fact a map that changes
from coordinates (or variables) (qi, qi) to the set (qi ,Pi)' So, the left side depends
on the q, p. Compute its differential:

(7)

(8)

aH i aH aH
dH= L:[-.dq +-adpd+-

a
dt.

. aql Pi t
I

Now compute the differential of the rhs:

Notice that Lagrange's equations (eqs. (5) can be written as:

Ifwe substitute and cancel terms in eqs. (8) (and take into account the definition
for Pi and the value of Pi from Lagrange's equations), we get:

(9)

Now compare to eq. (7):

·i aH
(10) q = ,

api
aH

(11) Pi = --,
aqi

aH aL
(12) - = --

at at

Eqs. (10) and (11) are Hamilton's equations.

Meaning of H

Example 5.2. Let L = T - V. T is taken to be quadratic homogeneous on the qi,
and L doesn't explicitly depend on t. Compute in that case:

- Principia 13(2): 195-232 (2009).
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or

From Lagrange's equations, eqs. (5),

dL d aL dqi aL del
dt = 4:[dt aqi dt + aqi dt ],

I

dL d. aL
dt = ~ d/q' aqi)·

Follows (also from the definition of Pi),

d ~.
-d (L - L./I.'Pi) = o.

t .
I
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Thus, in this specific case (L independent of t, and T homogeneous quadratic, a
property to be used below),

L - L:qipi = -H = constant.
i

Now recall from Euler's theorem that iff is homogeneous on variable x of degree
n,

From Lagrange's equations, as V is independent of qi ,

Then, in this case:
~. ~ .aT
~qlPi=~qla'i =2T.

i q

Thus,
L - 2T = -H = T - V - 2T = -(T + V),

or
H= T+V.

That is, in this particular case, H is the sum ofUte kinetic energy and the potential
energy. This means, the system's total energy-a constant here, as aH/ at = 0 (H
doesn't explicitly depend on t), and:

dH ~ aH . i aH . aH
dt = L~)aqiq + ap/i)+ at'

I

. Principia 13(2): 195-232 (2009).



Theoretical Physics: A Primer for Philosophers of Science

and, with the help of Hamilton's equations:

6. Hamilton-Jacobi theory

Canonical transformations

Supose that, from a domain spanned by the coordinates

(. .. ,qi"";",,Pi"")'

we make a coordinate transformation spanned by the new coordinates

(. .. ,Qi, ... ; ... ,Pi,···),

207

so that, for a new Hamiltonian function K, we have the (transformed) Hamilton-like
equations:

ti 8K
(13) =

8p·'!

Pi
8K

(14) = 8Qi'

Thus, as the variational principle (where we abbreviate the limits, to as 0, t 1 as 1),

oL = 0 {I(I>iqi - H(q,p, t))dt =0,
Jo i

must hold, so does the principle:

oL' = 0 {I(2: P/l/ - K(Q, P, t))dt = 0.
Jo i

Thus
, dF •

L =L+ dt ,

some F. For recall that, for any function F,

- Principia 13(2): 195-232 (2009).
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the integrands in the action integral must differ by a total time derivative dF /dt.
Consider a specific case: let F2 = F2(q,P, t). (Reasons for that notation follow

from traditional usage.) F should in principle depend on q,Q,p,P, but as there is a
1-1 map between the two sets of coordinates (q,p) and (Q,P), F can only depend
on 2n variables. Ifwe equate the integrands in the two action integrals, we get, after
expanding dF2 /dt,

The Hamilton-Jacobi equation

The Hamilton-Jacobi equation arises out of a singular Hamiltonian. If we ask for
K=O:

aF
K=H+-=Oat '

we trivialize everything, since the new Hamiltonian is constant and equal to zero:

as
H(q,p, t) + at = O.

If S = F2 (S is called Hamilton's principal function) we get that Pi = as /aqi. Then,

i as as
H(... ,q ,... , aqi, ... ,t)+at =0,

is the Ha~ilton-Jacobiequation. Its solution trivializes as desired the transformed
Hamiltonian. (This is a particular albeit very important example of a very general
theorem in dynamical systems theory: locally, that is, in a convenient open domain
were there are no singularities, every vector field can be "rectified.")

7. Back to where the action is

Let S = S(qi,pi> t). Since:

dS as. i as. as
"d= L"8iq +La ,.Pi+T't i q i PI t

as the momenta are constant once we solve the Hamilton-Jacobi equation, and from

- Principia 13(2): 195-232 (2009).
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we get that
dS ~ .
dt = ~Piq[-H=L,

[

from the K = 0 condition in the Hamilton-Jacobi equation. Therefore,

S=JLdt+C,

209

C an integration constant. We are back to our starting point; Hamilton's principal
function S is in fact (but for a constant) the Action Integral.

This closes the circle. Rene Thorn calls S the "entropy of mechanics," since that
function tells us the direction of time evolution in a mechanical system.

Geodesics as the path of a system

Example 7.1. A particular Lagrangian and its consequences. Consider the Lagrangian:

(15)

Here aij(q) means dependence on the position variables ... qi .... From:

(16)

and from:

(17)

~~_~aaij'k'j ~ .. "j ~abi(qLk
dt a 'i - ~ a k q q +~a[J(q)q +~ a k q ,

q 'k q . k qJ, J

aL _ ~ aaij(q) 'i'j ~ abi(q) 'i _ ah(q)

a k-~ ak qq+~ a k q a k 'q .. q . q q[,J [

we get, after some manipulations,

L: ,,' L: aakj aakm aamj 'm" L: abmabk .m ah
(18) ak·qJ+ (-+--. ---)q qJ= (---)q --.

. J . aqm aqJ aqk aqk aqm aqk
J J,m m

The l.h.s. of this equation is pretty well-known in general relativity: if we define
the aij through Lk aikakj = 8J, where 8J is tke Kronecker delta, or simply the

elements of the unit matrix written (8J) and if we abbreviate the parentheses with

the derivatives of the aij as [k,mj], and write {~n} = Ljakj[j,mn], we get:

(19) ..j+~{j }.m'k_Fjq ~mkqq-·

mk

- Principia 13(2): 195-232 (2009),
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This is the equation of motion of a body along a geodesic in Riemannian space with
metric tensor aij but for the external force of components F j. This force is formally
akin to the Lorentz force in electromagnetism, and is a Conolis-type force.

The space whose metric tensor (see below, the section on tensor calculus) is aij

and which is spanned by the coordinates C••• , qi, ...) is called configuration space. If
the F j = 0, the path of the system is a geodesic in configuration space with respect
to the metric tensor aij' D

The harmonic oscillator; planetary motion

There are two classical examples of solvable (integrable) mechanical problems that
can be easily settled with the analytical-canonical formalism: the harmonic oscillator
(periodic motion) and planetary motion restricted to the two-body problem.

Example 7.2. Harmonic oscillator. The Lagrangian is:

The total energy of the system is a constant, and equals the Hamiltonian,

E = H = (lj2)mx 2 + (lj2)kx2 •

Motion equation is immediately derived:

mx+kx=O.

General sblution is an oscillator of the form x =AeiBt + Ce-iDt , A, B, C, D constants,
as can be easily checked. D

Example 7.3. 'TWo-body central motion. We can reduce the two-body, central-force
motion to a single particle, central force problem, whose Lagrangian is given (in
polar coordinates, due to the problem's symmetry), by:

One of the two equations of motion is:

d aL d .
jJ" =---. = -[mr2 0] =0

U dt ao dt' '

since the Lagrangian is independent of r. The integral of motion is an angular
momentum,

of absolute value l.
~-,

- Principia 13(2): 195-232 (2009).
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Areal velocity

Imagine a triangle of height rand of infinitesimal basis rd8. Its area is (l/2)r2d8.
Then (l/2)rO is the so-called areal velocity. Follows from the conservation of I that
the areal velocity is constant, that is, we get Kepler's Second Law in a more general
setting: the radius vector sweeps out equal areas in equal times.

The equation for r

The other Lagrangian equation, for r, is:

d. '2 av
-(mr) - mr8 + -a = o.
dt r

An obvious substitution of the gradient of V by - f (r) gives,

mf - mr02 = fer).

8 can be eliminated by the conservation law for angular momentum:

I
mf--

3
=f(r).

mr

One immediately sees that this last equation is equivalent to,

a 12

mf = --(V + [1/2]-).
ar mr2

Multiplication by t gives,

... d 1 .2 dr a 1 12

mrr=-(-mr )=--(V+--).
dt 2 dt ar 2 mr2

Or,
d 1 12

mft = -d (V + --2)'
t 2mr

Or even,
d 1 .2 1 12

-[-mr +V+--] =0.
dt 2 2mr'2

This is the Law of Energy Conservation. The last term gives the angular kinetic
energy. Thus, if E is the system's energy,

1 1 12

E= [-mt2 +V+--].
2 2mr2

- Principia 13(2): 195-232 (2009).
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If we solve for r, we get:

dr 2 l2 1/2
- = [ -(E - V - -)] ,
dt m 2mr2
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which gives us the variables already separated, so that we can integrate for d t and
f(r)dr.D

8. From classical mechanics to quantum mechanics

Quantum mechanics cozily fits within classical mechanics. This is how it is done:
take a single particle in 3-space; its Hamilton-Jacobi equation is, from the general
Hamilton-Jacobi equation:

as as
H(q, aq' t)+ at = o.

If we restrict our attention to "almost plane-wave" solutions Seq, t) = W(q) - Et,
we get the "characteristic function" equation:

aw
H(q, aq )=E.

It is immediate to see that, for a single particle under the action of a potential V
in 3-space, the Hamilton-Jacobi equation becomes:

{ (
aW)2 (aW)2 (aW)2}(l/2m) ax + ay + az +V=E.

We can condense that as:

C'VW)2 = 2m(E - V) = 2mT,

where momentum p is given by:

p= V'W.

Formally, this is the same as the eikonal equation of geometrical optics, whose solu­
tions are trajectories of light rays:

- Principia 13(2): 195-232 (2009).
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Wave motion associated to W

213

L is a wave front, and the light rays are orthogonal to it. We can look at the equation
(VW)2 = 2mT from the same perspective. In that case, when W moves to W +dW,
because of the wave motion given by S = W - Et, we have, at the same time

dW =Edt,

and
dW = IVWlds,

as it is the increment along the gradient path. Therefore we get,

ds E
U=-=--.

dt IVWI

From the value of the gradient, given by the Hamilton-Jacobi equation for the single
particle,

E

U = -Jr=im=(=E=-=V=)

Now, for the single particle, T =E - V = (l/2m)p2. Thus,

E E
U=-=-.

P mv

(Pay attention to what we have shown: the wavefront velocity u for W is inversely
proportional to the particle velocity v.)

So, classical mechanics allows us to associate a wavefront (given by W) to a sin­
gle particle system. The same argument is valid in a more general context, whenever
we can associate the length element ds to kinetic energy, that is, whenever we have
ds2 = 2Tdt2 .

Now, if W corresponds to L, then S = W- Et must be a phase in a wave equation,
and must correspond to

kO(L-ct)=21t(~O -vt).

When we move from the W-eikonal equation to t,he L-eikonal equation, we see that
Wand L must be proportional; we cannot simply equal them. Therefore we cannot
equate both phases, but have to relate them through a proportionality constant. Call
it h. Then we get,

E=hv,

which is Planck's relation.

- Principia 13(2): 195-232 (2009).
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Schrodinger's time-independent equation

The eikonal equation (VL)2 = n2 is derived from the full wave equation,

for the solution
¢ = exp(A(r) + iko(L(r - ct)),

with r the position vector and the extra assumption that n varies very slowly with
distance.

Let's go backwards and obtain the wave-equation associated to W, that is, to the
't/J out of which we obtained W as the object that corresponds to the eikonal L.

Eliminate the time from the wave equation, that is, place time as an independent
factor e-iwt • From the relation

we get the time-independent wave-equation:

But A'= hlp, and p = V2m(E - V). Then,

That is: Schrodinger's time-independent equation.

9. Lagrangian densities, field theory

Suppose that we define a Lagrangian as L = Iv !t'('t/J,'t/J1J.)dkx, where the 1.1. range
over 0, 1,2, ... ,k -1, and 't/JIJ. = a't/J/axlJ.; we 'abbreviate alJ. = a/axlJ.. !t' is a
Lagrangian density, since we integrate it over a hypervolume V to obtain the full
Lagrangian L; the 't/J, ... are the field variables. If we impose that 5 L = 0 we get:

(20)
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Now 5'IjJ = 58jj 'IjJ = 8(5'IjJ), where we suppose commutativity of the differential
operators 5 and 8w Now,

(21)

The 1.h.s. is a divergence; if we impose that it be 0 - a conservation condition ­
we get, from eqs. (21) and (20),

(22)

For an arbitrary variation 5 'IjJ, follow the Lagrangian field equations for .!£ :

(23)

We are going to use those Lagrangian-density field equations to obtain the elec­
tromagnetic field equations and the Einstein gravitational equations.

10. The electromagnetic field

We restrict our attention to the so-called vacuum fields. We start from another
sacred spot, Maxwell's equations :.

1. Gauss'Law. It shows how the electric field "emanates" from a charge distri-
bution. It is:

V ·E=4np.

3-vectors are given in boldface. E is the electric field; p is the charge density.
Coulomb's Law is one of the solutions of the preceding equation.

(More elaborately, we know that the electrostatic field can be derived from a
scalar potential 41, that is, E = -Vq,.)

2. Ampere's Law. It gives us the magnetic field generated by the flow of an
electric current through a wire:

8E
V x B = (4n/c)J + (l/c)a-t.

B is the magnetic field, and J is the current density. The last term is Maxwell's
displacement current.
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3. Nonexistence of magnetic monopoles. This is:

V'. B = O.

(This implies that there is a vector A so that, in an adequate domain, B =
V' x A.)

4. Faraday's Law, or how to generate an electric field out of a time-varying
magnetic field:

aB
\1 x E + (l/c)a-t = o.

5. Charge conservation. Also called, the continuity equation (this is essentially a
balance equation):

ap
V'. J + (l/C}a"t = o.

Covariant or 4-dimensional formulation, first version

Consider the 4-dimensional space spanned by the following coordinate system,
(x, ict).

We represent a 4-coordinate by Greek indices, e.g., X w Whenever a Latin index
appears, e.g. xb it is supposed to range over the space coordinates, that is, k =
1,2,3. We won't bother for a while with "upstairs" and "downstairs" indices.

Einstein's summation convention

We agree that whenever a Greek index appears twice in an expression, it is under­
stood that the index is to be summed from 0 to 3. That is,

,.,.=3
a,.,.b,.,.= La,.,.bw

,.,.=0

Covariant current, covariant potential

Define the covariant current J as follows:

J = (J,.,.) = (icp,J).

Then the continuity equation becomes,
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(We have aJ.l = a / a xw ) Now for the potentials: we put,
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(We'll soon see the usefulness of that formulation; name "covariant" will be ex­
plained below.)

The electromagnetic field FJ.lV

.Form the skew-symmetrical array:__

Then Maxwell's equations can be thus written:

1. Inhomogeneous set, or Gauss' Law and Ampere's Law:

(24)

2. Homogeneous set, or Faraday's Law and the nonexistence of magnetic mono­
poles:
(25) a/-,Fvp + apF/-'v + avFpl1 = o.

This is the so-called circular, or Bianchi linear condition. As it will be seen, it
implies that, locally at least, there is a potential A = (AJ.l) such that:

(26)

The Bianchi conditions are the expression of a very deep mathematical fact, the
"double differential" condition a2 = 0, or, simply stated in a geometrical translation,
"the boundary of a boundary is empty."

The wave equation is obtained when we substitute the definition of FJ.lV in terms
of the potentials AIL into the inhomogeneous equation:

or
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We now impose the so--<:alled gauge condition oj.'Aj.' = O. This is no constraining
condition on the potentials Aj." for notice that, if we write:

(27) A~ =Aj.' + oj.'¢'

for any adequately differentiable ¢, it is immediately seen that this transformed A~

gives the same field Fj.'V as Aj." So we have some freedom here.

The transformation Aj.' - A~ = Aj.' + oj.'¢ is called a gauge transfonnation, and
the value of Aj.' given by oJ.lAJ.l =0 is the Lorentz gauge. Given condition oJ.lAJ.l =0
'we get the (inhomogeneous) wave equation: . , ,

oJ.loj.'Av = (41t/c)Jv'
I

and for D = oJ.l0W ./

DAv = (41t/c)Jv '

For Jv = 0, all v, this reduces to the well-known homogeneous wave equations
for the scalar and vector potentials:

O~
V2~ - (I/c2)8't = 0,

oA
V 2A - (I/c2)8't = o.

Dirac-like formulation

It is known that Maxwell's equations are equivalent to the Dirac-like set

VI{) =t,

where

and
t = jj.'Yj.',

V = yPoP'

(where the {yJ.l : IJ. = O,1,2,3} are the Dirac gamma matrices with respect to 1]).

They satisfy:
yJ.lyv + yVyj.' =21]j.'v

and 1] = diag (-1, +1, +1, +1) is a diagonal matrix that represents the metric tensor
over Minkowski space.

Those equation systems are to be considered together with boundary conditions
that specify a particular field tensor FJ.lv "out of" the source r.
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A Lagrangian density for the empty-space Maxwell equations

The sourceless Maxwell equations can be derived through the Lagrangian field equa­
tions, eq. (23) from the Lagrangian density:

(28)

11. From electromagnetism to special relativity

In a nutshell: special relativity is a theory that aims to make compatible particle
mechanics and classical electromagnetic theory. The basic criterion is: we keep
electromagnetic theory as it is, and make the required changes in particle mechanics.

The main postulate in the theory of special relativity is: the speed of light c is
constant in the vacuum, independent of the (linear) reference system. More pre­
cisely; if observer 0 is at rest with respect to reference system Ro, and observer 0' is
at rest with respect to reference system Ro', and Ro' is uniform motion with respect
to Ro, then both 0 and 0' will see the same light ray approaching them with speed
c. This means:

holds for Ro, while
OA' =0

J.l

holds for Ro', where AJ.l and A~ are measured with respect to the corresponding
reference .systems.

The requirement that the vacuum speed of light c be a constant follows from elec­
tromagnetic theory; as it can be easily shown that c onle depends on the constants
EO, J.Lo, that is, the vacuum electric permissitiy and magnetic permeability.

Given that requirement, the linear transformations that relate Ro and Ro' are
those that keep invariant the metric form

If (1/J.lv) denotes the diagonal matrix with diagonal (-1, + 1, + 1, + 1), then, for
dxo = cdt, we can write:
(29) ds2 = 1/J.lvdxJ.ldx:,v.

(We call the signature of 1/ the algebraic sum of the elements in the diagonal (-1, +1,
+1,+1); here 1/ has signature +2.)

The Lorentz transformations are the homogeneous linear transformations (LJ.lp)
that satisfy:
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The well-known transformations:

Francisco Antonio Doria

(30)

(31)

x-vt
x' = , y' =y,

v'(l - V2 / C2)

I t - (VX/C
2

)
t = z' = Z,

v'(l- V2 /C 2 )'

are a particular case of the above.
This is what we require about special relativity. Special relativity follows from

the condition: the equations of physics should be covariant with respect to the lin­
ear transformations that keep ds 2 invariant. Covariant means: their form must be
unchanged.

Best example are Maxwell's equations themselves; for Lorentz-transformed F~v

and J~, we get, again,

aJlF~V = (41r/c)J~,

aJlF~p + apF~v + avF~Jl =o.
The Lorentz-transformed current and field are:

F~C7(X') = LpJlLC7V FJlv(x).

One also tequires the transformation x 0-+ x' to transform current and field.

12. General Relativity

General relativity is covariant gravitation theory; it is an extension of Newton's
classical-mechanics version of gravitation.

Tensor calculus

We need here a rather extended geometrical introduction, in order to develop a
language that will be the setting of general relativity.

Paths, contravariant vectors

Let M be some kind of n-dimensional, real, curved space (we think of M as a n­
dimensional real differentiable manifold in the mathematical sense, but we'll require
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very little of its properties here). Let U C M be a domain over which range coor­
dinates xlJ., J.I. = 0,1, .. . ,n -1. From here on until further notice we suppose that
J.I., v, p, ... range over 0, 1, ... , n - 1.

We will also use here indices that are "upstairs," as in the coordinates xlJ., and
"downstairs," as in the partial differential operators Ow We again use here Einstein's
summation convention, with a slight modification that will be specified below.

A path r in U is a n-ple xlJ.(t), with real parameter t ranging over a (possibly
improper) real interval. A covariant vector tangent to path r has as components the
n derivatives dxlJ. / d t, or jclJ..

Suppose that one makes a coordinate change xlJ. - x'lJ. over domain U. Then
the components of the vector tangent to r will change accordingly:

dxP ox'P dxlJ.
dt"(x') = oxlJ. d"t(x).

Let now AIJ.(x) be a set of functions that transform as above, that is:

ox'P
AP(x') = oxlJ. AIJ.(x).

They are said to be the components of a contravariant vector on U.

Gradients, covariant vectors

Let f (x) be a function defined on U. The gradient of f has components of /0 xlJ., or
as abbreviated above, olJ.f. Given a transformation x - x', the gradient's compo­
nents transform as:

o , oxlJ. 0
ox,pf(x ) = ox'P oxlJ.f(x).

Given ~ny set of functions BIJ.(x) that transform as a gradient,

" oxlJ.
Bp(x ) = ox,pBIJ.(x),

we say that the BIJ. are the components of a covariant vector on U.

Summation convention

We can now state a new version of Einstein's summation convention, now for con­
travariant and covariant objects:

Repeated indices, one upstairs and the other one downstairs, are to be summed
from 0 to n - 1.
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The Kronecker delta op
It is given by:

Francisco Antonio Doria

axa
_ s::a

ax f3 -uf3'

or op = 1, if a = f3, and 0 otherwise. It's in fact a convenient representation for the
elements of the n x n identity matrix. The Kronecker delta is our first example of a
mixed tensor of order 2.

Tensors, contravariant, covariant and mixed

Objects with several indices such as g/-lY' yaf3 , and A~ that transform according to
the covariant rule of transformation, for downstairs indices, and the contravariant
rule, for upstairs indices, are called higher order tensors; vectors and gradient-like
objects are first-order tensors. The g/-lY are the components of a covariant tensor of
order 2; the y/-lY are those of a contravariant tensor of order 2; and the A~ are those
of a 2nd-order mixed tensor, and so on.

The covariant derivative: contravariant vectors

We need a derivative operator that produces a tensor when applied to another tensor.
That concept is given by the covariant derivative.

Let the e/-l(x) denote a vector basis that spans U as above. For a contravariant
vectorfiel~ one has, A = A/-lew Let's compute the differential dA:

We now postulate that the differential de/-l is:

where the r py account (in a way to be seen) for the effects of curvature. Into the
equation upstairs,

dA = dA/-le +AI-lrp dxYe/-l IJY p.

We can change summed indices, as they are only'bound variables:

Or, still,
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If we now put ep" dx'V in evidence,

We define: the covariant derivative A~'V of AP. is:,
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Since we have constructed dA as a vector, the A~'V must transform as a 2nd-order
mixed tensor. The effects of that on the r~'V will be seen below.

The covariant derivative: covariant vectors

Consider a covariant vector B = Bp.eIl. We can relate covariant basis ell to the con­
travariant one by a duality induced by a scalar product:

e . e'V = rOYp. up.'

(This is the usual duality operation in linear algebra.) Now, notice that o~ is a,
constant object, and so its differential do~ =O. Then,

As,

dep. = r~'Vdx'Vep,

a simple computation shows that:

deP. = -r~O'dxO'eP.

Follows that, for a covariant vector B = Bp.eP.,

Bp.;'V = a'VBp. - r~'VBp = Bp.,'V - r~'VBp'

Again the Bp.;'V must transform as a tensor; this time as a 2nd-order covariant tensor.

More notational conventions

Let's write for the sake of convenience:

... Principia 13(2): 195-232 (2009).
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Here A is a "vertical" vector of components AP., and the n r", = (r~)p. are seen as
matrices that act upon A.

Suppose now that we can detach the transformation of the "inner" indices in
A = (AP.) from those of the "outer" indices like the J..t in r p.' Let us consider a mapping
Dp.A>-+ U-1(Dp.A), where U is a matrix that acts on the space of the A. (We'll soon
relate U to the preceding coordinate transformations; the use of an inverse matrix is
both by convenience and to emphasize that we deal with a nonsingular map.)

Then:
(34) U-1(Dp.A) = U-1(D",UU-1A),

or
(35) U-1Dp.A= [U-1aU + u-1r ",U]U-1A.

That is, the maps A >-+ U-1A, Dp.A >-+ U-1Dp.A induce (and are induced by) the
transformation:

rp' >-+ [U- 1a",u+u-1rp.U].

For U = eA(xl'), and Abelian,

r p. >-+ r p. + a",A,

that is, a gauge transformation like those in electromagnetic theory; see eq. (27).
One sometimes call the r p an affinity.

Properties of the affinity r~p

Out of th~ preceding remarks it is easy but cumbersome to check that the r~p trans­
form as follows:

Moreover:

• The sum r~p +A~p of an affinity r and a tensor A, one time contravariant
and two times covariant, is another affinity.

• The difference of two affinities r/~p - r~p is a tensor.

The curvature tensor

The preceding trick also simplifies the computations that lead to the curvature tensor.
The partial derivative operator commutes, that is, ap.8,v = ava"" for well-behaved
points. This isn't the case for the covariant derivative Dp.:

(36)
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where:
(37) RlJ.v = olJ.rv - ovrlJ. + r IJ.rv - rvrlJ.'

or even, if we write the commutator [A, B] = AB - BA,
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(38)

Again, if we deal with Abelian r IJ.' we get an electromagnetic-like field: RlJ.v =

olJ.rv - ovrv'
Interpretation of the RlJ.v is simple: infinitesimally parallel transport A along

coordinate xlJ., and then along xv; getA'. Now do the same along XV and then along
xW'. Get P('. If there is no curvature, A' - p(' = O. This is not the case when there
is some curvature present, and the nonzero term RlJ.vA gives a measure of how far
from flatness is this region U of our original space.

Riemann's tensor

Riemann's tensor is then, simply:

R~pa = opr~a - oar~p + ripr~a - riar~p'

Metric tensor, Christoffel symbols, Riemann-Christoffel tensor

Let ds = dxlJ.elJ. be an infinitesimal displacement; we have that:

The glJ.v = CelJ. . ev) are the components of the Riemannian metric tensor. Notice
the symmetry glJ.v = gv!J.' We now impose that the glJ.v be covariantly constant, that
is, for all p,

DpglJ.v = glJ.v;P = O.

This means that, if we view the Dp as a kind of infinitesimal displacement operators
- which they are - then the components of the Riemannian metric tensor are kept
unchanged throughout those displacements.

The fact that the glJ.v are covariantly constant leads (after some computations)
to the relation:

•1
{~p} = r~p = "2glJ.aCovgpa + opgva - 0agvp)'

Here we have used the defining relation glJ.p gpv = 5~. The r thus defined are the
Christoffel symbols of the second kind; those of the first kind are the expression above
without the glJ.V in front of it.
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The fully covariant Riemann curvature tensor defined out of the Christoffel sym­
bols as affinities is the Riemann-ehrlstoffel tensor. Formally,

(39) RJ.lvpa = g,.,.itR~pa

The following symmetry properties are established by direct calculation:

(40)

Geodesics

Let xJ.l(;t) be a curve parametrized by;t. Let ds be an infinitesimal arc along that
curve. We know that the curve thus given is extremal if and only if 5 fads '= 0, that
is,

J
dx"" dxv

(41) 5 a gJ.lV d;t d;t d;t2.

Compare with the deduction of eq. (19); we get:

d2xJ.l dxP dxa

(42) d;t2 + {~a} d;t d;t = O.

The Bianchi identities

They are easy to check; they only require a few straightforward calculations:

(43) RJ.l +RJ.l +RJ.l - 0vpa;it vitp;a vaA;p - .

Compareeq. (43) to eq. (25). The earlier, linear set locally determines potentials for
the fields FJ.lv; also, the similarity between eqs. (26) and (38) is striking. However
the above nonlinear conditions do not determine a single "potential" (in our case, the
affinity) for the curvature seen as a "field"; not even modulo a gauge transformation.

Ricci and Ricci-Einstein tensors

The Ricci tensor is:
(44) RJ.lv =R~vp·

The Ricci tensor is symmetrical in its two indices. Out of it we obtain the Ricci­
Einstein tensor, also symmetrical in its two indices:,

(45)

where:
(46)

is the curvature scalar.
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The Einstein field equations

Now let our space M be 4-dimensional, real, and endowed with a (pseudo)-Rieman­
nian metric tensor of signature +2 as in eq. (29). M is Einstein's spacetime. We can
finally state the Einstein field equations for the gravitational field:

1
(47) GJ.l'V =RJ.l'V - '2 gJ.l'VR = KTJ.l'V'

TJ.l'V is the energy-momentum tensor; it is the material source for the geometricall.h.s.
of the field equations. K includes the contribution of Newton's gravitational constant
G. We can also write the Einstein equations as:

1
RJ.l'V = K(TJ.l'V - '2T),

for T = gJ.l'VTJ.l'V' Then, in empty space (that is, TJ.l'V = 0, absence of matter), eq. (47)
gives:
(48) RJ.l'V =O.

A Lagrangian density for the Einstein field equations

Let g denote the determinant of the matrix (gJ.l'V)' The Lagrangian density for the
empty-space Einstein field equations will be:

(49) !£ = ';-gR.

Here,
(50) R = gJ.l'V [r~p,'V - r~'V,p + r~o.r~'V - r~'Vr~CT]'

can be seen as defined out of two independent variables, the gJ.l'V and the r~'V. If
we treat them independently we use the so-called Palatini formalism. The relation
between metric tensor and affinity will be derived through the Euler-Lagrange equa­
tions.
We sketch the derivation of the fie~d equations. For the variations we re9u~re:

a';-g 1 1 ag 1
(51) 8';-g = 8gJ.l'V = -';-g---8gJ.l'V = _';_ggJ.l'V 8gJ.l'V'

agJ.l'V 2 g agJ.l'V 2

Also, from gJ.l'V g'VCT =8~ we get that 8gPCT =_gPJ.lgCT'V 8gJ.l'V' This leads to:

1
(52) (RJ.l'V - '2 gJ.l'VR)8gJ.l'V + gJ.lV 8RJ.l'V = O.

Since the gJ.l'V and r~'V are independently varied, the term within parentheses gives
the field equations for empty space; the second term, after several manipulations,
implies gf:; = 0, that is the .relation that leads to the relation r~v = {~'V}, or: the
affinities are the Christoffel symbols.
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13. Gauge field theories

Francisco Antonio Doria

Gauge field theories are very similar to both electromagnetic theory and gravitation
theory; in fact they are a kind of nonlinear version of electromagnetism, that includes
gravitation as a particular case. We start from a finite-dimensional, semi-simple Lie
group G, finite-dimensional, usually identified to one of its (simple) matrix repre­
sentations; the Lie algebra of G is noted L(G), and if we impose that G be connected,
L(G) "generates" G in the following sense: if Ag E L(G) then g =eAg E G. So, we
can look at the elements of L(G) as a set of matrices that generate G. The xp. range
over spacetime, as in the case of general relativity and gravitation theory. .

We will proceed exactly as in eqs. (33)-(38), and get, for a covariant vector
(A'b)p. = Ap., where the a, b are matrix indices to indicate that the Ap. are matrices in
the Lie algebra L(G):

(53) FlAv = ap.Av - avAp. + [Ap.,Av],

where the L(G)-valued Fp.v are the components of the gauge field. The U in eq.
(35) take values in elements of G, or can be seen as elements of G parametrized by
spacetime variables xp.. The gauge field equations are:

(54) D Fp.v - J'p.p. -,

while we again have a set of Bianchi-like identities,

(55)

The gauge field equations are eqs. (54), and (55), this last one coupled with eq.
(53), as they are not equivalent (over an open ball in spacetime), as it is the case for
the electromagnetic field.

A Lagrangian density for the empty-space gauge field equations

The sourceless gauge field equations can be derived (through the Lagrangian field
equations, eq. (23)) from the Lagrangian density:

,

(56)

(Summation is also to be done over the gauge index a.) This density is the nonlinear
version of the electromagnetic Lagrangian density (56).
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Gauge transformations of the first and second kind
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Consider a Lagrangian density which is quadratic in all fields in the following sense:
it is a sum of terms of the form <jJ* X, where * denotes complex conjugation or Her­
mitian conjugation. Thus the transformation (for a a real constant):

keeps invariant the Lagrangian density, since the exponential is a constant and moves
inwards and outwards differential operators.

This is called a gauge transfonnation of the first kind.
Now suppose that the transformation is pointwise or locally defined, that is, for

a function xCx):

The transformation doesn't commute with the differential operator Ow and so the
Lagrangian density isn't invariant with respect to it. This is a gauge transfonnation
of the second kind.

We give an example for Abelian fields.
We use here a trick. We add a field All that will compensate for the "bad" behavior

of the transformation under oil: if 'IjJ' = eix(x)'IjJ, then:

provided that:

A'1l = All - WIlX,

which is a gauge transformation as we know it from electromagnetic theory (for
Abelian fields in general).

Generalization to the nonabelian case is straightforward. This means: the im­
position of a gauge invariance of the second kind can be compensated by the addition
of a gauge potential All to the original Lagrangian density in an adequate covariant
derivative operator.

That is to say, where we had an ordinary differential operator oil' imposition of
a local gauge symmetry makes it into a covariant derivative, viz. oil 0---+ DIl = oil +Aw
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A brief overview of the Higgs mechanism

Francisco Antonio Doria

We will restrict our consideration to Abelian fields, but the extension to the non­
abelian case is straightforward.

We start from a massive, spin 0 field with a nonlinear interaction:

!£ = 8~¢*8~¢ - V(¢*¢),

m2

V(¢*¢) = -(¢*¢ - V 2 )2.
2v 2

,(Squared mass is m2 /2v2.) m, v are constants.The extra terms in V are the non­
-linear self-interaction of the field ¢. Now impose localgauge jymWetry, that is"
add a gauge field to countermand the symmetry condition. The'"Lagrangian density
becomes:

!£ = Dp.¢*D~¢ - V(¢*¢) - (1/4)Pjlypjl",

and with a slight change,
Djl = 8~ + iqAw

Notice that the gauge field is a massless field, of course.
Now suppose that v > 0 and consider a perturbed field ¢' =v + (1/ ..f2)h, ¢ ~

real field. The idea is that such a v is a ground state for the potential energy that
(in fact) breaks the gauge symmetry of the system. The original Lagrangian density
becomes:

!£ = 8jlh8jlh - m 2h2 - (1/4)PjlvpjlV +q2v2A'~'~ +other terms.

We have here two massive fields that interact: the Higgs field h and the gauge
field Pjlv, with mass term q2v2A~A'~. (A' is the gauge transform of A.) We say
that spontaneously broken symmetry leads to the appearance of mass, as if mass were
known through interaction with the Higgs field.

This concludes our survey, that went from the 18th century beginnings of me­
chanics to techniques developed in the 60s in the 20h century, such as the Higgs
mechanism. We conclude with a brief discussion of axiomatic tools in theoretical
physics.

14. A note on axiomatizations of physics

An axiomatics for physics is the query in Hilbert's 6th Problem. It is considered to be
an ugly duckling among the Hilbert Problems, as many authors dispute the actual
usefulness of placing physics in an axiomatic framework. We will briefly mention a
few results of our own (with da Costa) on the axiomatics of physics:
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Proposition 14.1. Classical mechanics, Schrodinger's quantum mechanics, electromag­
netism, general relativity and gauge field theory can all be axiomatized within Zermelo­
Fraenkel set theory. []

Therefore all known results in theoretical physics become ZF theorems, as long
as they can be given rigorous formulations, let us say, by the usual mathematical
standards and without the help of ''very large" objects (that last condition is given
within quotation marks to mean that we exclude large cardinal extensions of ZF).

Proposition 14.2. There are ''physically meaningful" undecidable sentences in any con­
sistent ZFaxiomatization ofphysics. []

By "physically meaningful" we mean sentences that describe actual situations in
physics, e.g., for a particular Lagrangian L, the formalized version of the sentence
"L describes a harmonic oscillator" is formally undecidable within ZE Obviously,

Proposition 14.3. Any two ZFaxiomatizations ofphysics have the same undecidable
sentences. []

This means that, for a wide variety of constructions, choosing a particular ax­
iomatics for physics is just a matter of taste. It won't affect the results we can derive
(or that we can't derive) from our axiomatic framework. For more details see da
Costa & Doria 2006.2
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Resumo. Fazemos urn sumario das principais areas ern fisica te6rica, enfatizando-se sua
relal;ao ao forrnalismo lagrangeano ern mecanica c41ssica. Este sumario cobre: mecanica
classica, 0 caminho da mecanica classica amecanica quantica de Schrodinger, 0 eletromag­
netismo, relativade restrita e geral, e, rapidamente, teorias de gauge, inclusive 0 mecanismo
de Higgs. Deixamos de lado 0 rigor matematico ern favor de urna apresenta~o mais simples.
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